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ABSTRACT 

Human induced pluripotent stem cells (iPSCs) originate 
from human somatic cells by introducing certain 
transcription factors. They can then divide indefinitely being 
able to differentiate into every cell type. Recently, various 
ocular cells, including corneal epithelial-like cells, retinal 
pigment epithelium (RPE) cells, photoreceptors, and retinal 
ganglion cells, have all been successfully derived from iPSCs. 
Transplanting the iPSCs in animals is very promising. The 
first clinical trial on humans started in 2013. More work and 
research has to be done to ideally promote iPSCs integration 
into the host tissue, to prevent tumor growth, and to develop 
functionality of the transplanted cells.
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INTRODUCTION 

The retina is a complex multilayered neural tissue that 
converts light energy to electrical signals. These signals 
are relayed through the optic nerve to the occipital lobe 
of the brain, achieving the visual processing.  Up todate 
any degeneration of any part of the retina is considered 
permanent. Age-related macular degeneration, retinitis 
pigmentosa, and glaucoma, are major causes of irreversible 
blindness worldwide. Currently there is increasing interest 
in repairing damaged tissues with pluripotent stem cells 
which can divide indefinitely and have the potential to 
generate multiple types of cells. These characteristics of 
stem cells offer the opportunity to repair virtually all types 
of tissues, including the retina, through cell replacement or 
transplantation.

The first pluripotent stem cells that can be induced 
to generate all types of cells including retinal neurons, 
are the human embryonic stem cells (hESCs)1,2. Stem 
cells can also be induced from autologous somatic cells. 
Takahashi and Yamanaka showed that pluripotent stem 
cells could be generated from mouse fibroblast cultures 
by adding four transcription factors: Oct3/4, Sox2, c-Myc, 
and Klf43. Yamanaka and Gurdon by studying the mode 
of reprogramming mature cells into embryonic cells, won 
the Nobel Prize in 2012 by observing the fact that induced 
pluripotent stem cells from autologous somatic cells can 
eliminate the post-transplantation rejections issues thus 
resolving all ethical concerns surrounding the use of 
embryonic cells and having enormous therapeutic potential 
through tissue modeling4,5,6.

There are many studies on immunogenicity, potential for 
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tumor formation and epigenetic aberrations of iPSCs. Miura 
et al. reported the importance of the type of tissue from which 
iPSCs are supposed to be originated in order to avoid teratoma 
formation after transplantation7. The iPSCs originated from 
mouse embryonic fibroblasts and transplanted into murine 
models, were considered safe,while those originated from 
adult fibroblasts are considered unsafe because of the 
insurgence of severe teratoma formation8. To date, despite 
the safety and integrity concerns, studies demonstrating the 
treatment efficacy in various disease models have made the 
further research of  iPSCs transplantation very interesting 
and worthwhile.

Degenerative diseases such as age-related macular 
degeneration and glaucoma, are considered  incurable. 
Utilization of iPSCs could be very promising in replacing 
corneal epithelial cells, RPE, photoreceptors, and RGCs in 
order to restore visual function. This is a review on recent 
developments of stem cell therapy for AMD, corneal 
dystrophy, and RGCs diseases.

Figure 1: Schematic illustration of iPSC induction and 
reprogramming into ocular cells.

iPSCs derived Corneal Epithelial-Like Cells
To achieve optimal vision a transparent cornea is 

indispensable. Superficial corneal damages are self-
limited9,10. But corneal ulceration and scarring are much 
more difficult to cure. So came up the idea of using iPSCs 
derivatives.

Corneal healing proceeds in a centripetal mode11. This 
is due to the adult stem cells derived from limbal cells12. 
In cases of corneal damages in one eye, autologous 
transplantation from the healthy eye by using limbal cells 
can be achieved13. But this is not possible in bilateral injuries. 
A valid alternative to this problem is to use corneal epithelial 
cells derived from full thickness  biopsy limbal cells14. In 
this way we have unequivocal improvement of vision.

Considering the need for allogeneic grafts to treat bilateral 
corneal epithelium deficiency, Homma et al. studied 
transplantation of ESC-derived epithelial progenitors15. 

In this case immunosuppressive therapy is completely 
necessary. The early development of iPSC-derived cells using 
two molecule inhibitors was recently studied by Mikhailova 
et al.17 Modulating intracellular pathways to differentiate 
ESCs or iPSCs, could lead to produce neuroectoderm18 or 
surface ectoderm (corneal epithelium). Thus these studies 
are very promising showing the possibility of using iPSC-
derived cells in autologus treatment of corneal diseases.

Figure 2: Schematic illustration of corneal epithelial cell 
differentiation from ESCs or iPSCs.

Photoreceptor Degeneration Therapy using iPSC-
Derived RPE

Retinal degeneration is untreatable and irreversible up 
today, indifferently to the time of onset. It may occur in 
younger patients such as in Stargardt’s disease, or in eldery 
patients with macular degeneration. The possibility of 
repairing  the degenerated cells with iPSCs is astonishing.

Rod and cone photoreceptors work closely together with 
the RPE. Its main function is to transport nutrient and waste 
products, participate in vitamin A-rhodopsin conversion 
cycle, phagocyte outer segments of photoreceptors, and 
absorb scattered light. Photoreceptors are connected to 
retinal ganglion cells (RGCs) through bipolar cells. The cell 
bodies of RGCs reside in the ganglion cell layer, and bipolar 
cell nuclei reside in the inner nuclear layer. The axons of the 
RGCs meet to form the optic nerve.

Dysfunction of the RPE can be a disease-initiating event. 
There is the possibility of correlation with age-related 
macular degeneration19 and retinitis pigmentosa20. RPE cell 
transplantation has thus been investigated both in animal 
models and in humans for a long time21. There are two 
possibilities of RPE cell transplantation either injected as a 
cell suspension or on a monolayer cell sheet. The membrane 
potential, ion transport, and secretion of vascular endothelial 
growth factor in RPE cells derived from iPSCs are all similar 
to native RPE22. Telomere shortening and rapid senescence 
were observed after several cell cycles, determining 
impaired function23. Only cells from the first passages could 
eventually be used to preserve correct functioning of RPE 
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cells22. Molecular markers can be used to determine the 
differentiation status of the iPSC derived RPE cells 24.

Replacing damaged Photoreceptor Cells

Damaged photoreceptor cells can be replaced, indiffer-
ently from RPE status. Replacement of photoreceptor cells 
is definitely difficult and challenging because new neurons 
have to form and develop appropriate neuronal connectiv-
ities. Precursor photoreceptor cells survive and improve 
visual function after subretinal transplantation25. Human 
ESCs can be used to differentiate into retinal neuron progen-
itors, which can then be ulteriorly differentiated into simi-
lar photoreceptor cells and RGCs26-28. Tumor formation was 
observed after transplanting early stage retinal progenitors. 
But using late stage retinal progenitors showed no efficient 
integration with the retina27. However injecting cells in the 
outer nuclear layer (ONL), determined the formation of new 
outer segments26. Using these cells in cases of  Leber’s con-
genital amaurosis  an improvement in visual function was 
observed. Ηοwever, the use of a small amount of integrated 
cells should be taken into account.

Photoreceptors generated from iPSCs preserve chara-
tecteristics of membrane current, gene expression and in-
termembrane channels29. Nevertheless there are many ques-
tions regarding the generation of photoreceptors from iPSCs. 
These issues involve a highly homogeneous population of 
donor photoreceptors, adaptation of the host environment 
to allow survival and integration of the grafted cells, and 
immune suppression. This is the basis for iPSC-based ret-
inal therapy. Lamba’s group studied injection of iPSC-de-
rived photoreceptors in wildtype mice30. A small amount 
of subretinally transplanted cells had migrated to the ONL 
three weeks after the subretinal transplantation. Similar in-
tegration into the ONL was observed in a degenerative swine 
model, after transplantation of swine iPSC-derived rods30. 
However by using electroretinography no improvement of 
retinal function was found. But this could be explained by 
the small amount of injected cells. These studies are promis-
ing in treatment of previously untreatable blinding diseases.

Figure 3: Schematic illustration of photoreceptor (rod and cone) 
or RGC production from ESCs or iPSCs

Replacing RGCs and repairing Optic Nerve

Replacement of retinal ganglion cells is necessary in 
glaucoma and optic nerve injury,because they are the major 
cell type affected in these conditions. The replacement of 
these cells has huge obstacles compared to the replacement 
of any other retinal cell types,because retinal ganglion cell 
fibers must extend through the optic nerve and connect with 
appropriate visual centers. Injection of retinal ganglion 
cells progenitors into the intravitreal cavity of rats showed 
migration and integration into different layers of the retina 
by a small number of cells. Trying to protect and regenerate 
the optic nerve, human iPSC-derived neural progenitors were 
injected into rats with optic nerve damage31. Observed cells 
integrated into the retina, thus leading to surviving optic 
nerve axons, and a significant increase in visual capacity.

The regeneration of three-dimensional optic vesicle-like 
structures with layered retinal neurons has recently been 
reported, by using mouse embryonic stem cells and human 
iPSCs32,33. In 28 weeks the development of retinal ganglion 
cells and other types of retinal cells, were observed but 
without optic nerve restructure.  This eye cups culture system 
provides an optimum opportunity for studying the factors 
that control retinal ganglion cell pathology, regeneration, 
and development. Developments in iPSC field offer great 
opportunities for therapy development of previously 
incurable retinal diseases.

iPSC-derived cell transplantation
The innate capacity of iPSCs to divide indefinitely is 

extremely important in obtaining sufficient cell numbers for 
transplantation. But there is the probability of uncontrolled 
cell divisions, that could lead to the insurgence of ocular 
tumors. Thus research studies in animal models about the 
tumorigenicity of human stem cells is extremely important 
,before human clinical studies can be performed [34]. 
Kanemura et al studied the injection of suspensions of 
human iPSC-derived RPE cells into the subcutaneous tissue 
of immunodeficient mice35. Also no tumor growth was 
observed by performing subretinal injection of human iPSC-
derived RPE cells, up to 15 months after transplantation. 
Moreover no tumor formation was seen in rats injected 
with iPSC-derived RPE cells suspension subretinally36. 
Completion of clinical trials for subretinal transplantation of 
human ESC-derived RPE suspension in AMD or Stargardt’s 
disease patients demonstrated the absence of adverse events 
up to 22 months37,38. Ongoing clinical trials for human ESC 
or iPSC-derived RPE cells, are hopeful for stem cell-based 
therapies without adverse effects like tumor growth.

Autologous cell replacement using iPSC-derived RPE in 
AMD therapy by injecting cell suspensions, probably does 
not provides long-term cell survival. The transplanted cells 
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were no longer detectable after 3 months36. But an improved 
visual response in the transplanted eye, demonstrated a 
possible protective effect. In another study iPSC-derived 
RPE suspension was transplanted into mice with retinitis 
pigmentosa39. By injecting small number of cells there was an 
improvement in electroretinography, with no  tumor growth. 
But transplanting human iPSCs into a rod photoreceptor 
dystrophic mouse model showed integration and cell to 
cell contacts40. In this case RPE cells may be developed 
as a monolayer on an artificial scaffold in vitro. Currently 
there are researches on using or not the idea of the artificial 
scaffold to increase survival and therapeutic capacity of RPE 
monolayer in retinal diseases.

Conclusions
Many studies have been done or are still running on integrity, 

tumorigenicity and therapeutic uses of reprogrammed 
stem cells for neurodegenerative conditions in ophthalmic 
field. The increasingly improved quality of iPSC-derived 
RPE cells and photoreceptors, deriving corneal epithelium 
cells, RGCs is really encouraging. The astonishing in this 
new field is that these cells derive from adult somatic cells 
using several transcription factors, without the involvement 
of human embryonic tissues. Thus offering patients the 
opportunity to receive autologous cell therapy [41]. The 
complexity and the variations in reprogramming technology 
and protocols in cell ocular differentiation are so big, that 
the full potential of iPSC-based therapy is yet to be realized. 
However there are important issues to be solved. Such as the 
potential risk of tumor formation, and the long-term effects 
of reprogramming somatic cells. The technology of iPSCs 
offers individualized disease modeling and personalized 
autologous grafts for transplantation purposes. It opens a 
window in therapy of previously untreatable diseases.
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